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Abstract

Grasp learning has become an exciting and important topic in robotics.

Just a few years ago, the problem of grasping novel objects from un-

structured piles of clutter was considered a serious research challenge.

Now, it is a capability that is quickly becoming incorporated into in-

dustrial supply chain automation. How did that happen? What is the

current state of the art in robotic grasp learning, what are the differ-

ent methodological approaches, and what machine learning models are

used? This review attempts to give an overview of the current state of

the art of grasp learning research.
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1. INTRODUCTION

Machine learning has had a major impact on robotics over the last ten years. Nowhere is this

more evident than in robotic grasping. Classically, grasping has been viewed as a planning

or constrained optimization problem where the positions and forces of the robotic contacts

are calculated in order to satisfy mechanical constraints such as force or form closure (1, 2).

However, with the advent of deep learning, it has become much more common to take a

learning based approach where a neural network model infers a grasp strategy directly from

image data without necessarily reasoning about object geometry or mechanics in a direct

way. Approaches of this type have proven to be very effective when grasping in dense clutter

or when the geometry of the objects is unknown.

The goal of this paper is to enable a researcher who is new to the field to quickly come

up to speed with some key ideas in grasp learning. However, since this is a quickly evolving

field, it is unclear what approaches are best in many cases of practical interest. Therefore,

instead of presenting an overarching framework, this paper attempts to review and classify

some of the major types of methods that have been pursued over the last five to ten

years and to highlight a small number of papers that are representative of those categories.

This review largely ignores papers older than five years in order to focus on contemporary

methods. Moreover, it makes no attempt to cite or describe every single grasp learning

paper and there are doubtless many important papers that have been missed. Nevertheless,
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this review will hopefully give the reader a broad perspective on a fast-moving field and a

sense for where challenges may lie.

2. GRASPING IN SE(2)

A lot of work on grasp learning is in SE(2). Generally, a two fingered gripper is used and

it is constrained to remain in a top-down configuration with the gripper fingers pointed

straight down at the table. In this setting, the input is a top-down image of a scene (either

RGB, RBGD, or depth) and the output is the (x, y, θ) ∈ SE(2) coordinates of one or more

hand poses from which a grasp is feasible. As such, the grasp learning problem can be

expressed as the problem of finding a function f : Rc×h×w → SE(2)k that maps from a

c-channel h× w image onto a set of k ≥ 1 feasible grasps.

2.1. Sample and Test Methods

This is one of the simplest approaches to grasp detection. Here, the focus is on classification

of whether a grasp candidate is a good grasp or not. The input is an image I (RGB, RGBD,

or depth). Grasp candidates are often expressed in image coordinates u, v, θ, where u, v ∈ Z
2

denotes the grasp position in terms of its pixel coordinates and θ ∈ S1 denotes orientation

of the gripper relative to the image plane. Given a grasp candidate, the neural network

model predicts the grasp quality, i.e. whether the candidate is likely to be a good grasp or

not. Sample and test methods work by sampling a large number of grasp candidates (e.g.

exhaustively or using some heuristic) and then inferring the quality for each candidate. The

algorithm returns the highest quality set of grasps.

2.1.1. Lenz, Lee, and Saxena (2015). An early instantiation of the Sample and Test method

was the work of Lenz, Lee, and Saxena (3, 4) where the authors use a small two layer fully

connected neural network model for grasp classification. Grasps are represented as a grasp

rectangle, a rectangle in an image centered and oriented on the gripper in the grasp pose.

This is analogous to an oriented bounding box that aligns with the grasp pose. The grasp

rectangle is encoded to the neural network as a 24 × 24 image patch. A key challenge

with this approach (and with the Sample and Test method in general) is the computational

expense required to classify every possible grasp candidate in a scene, i.e. all possible

grasp positions and orientations. This paper addresses the problem by using two models:

a lightweight model which is less accurate but cheap to evaluate and a heavyweight model

which is more accurate but more computationally expensive. The lightweight model is

evaluated on all candidates and only the top ranked ones are sent to the heavyweight model

to be evaluated. The method was evaluated on the Cornell Dataset (Section 4.2.1) and

found to reach a 75.6% accuracy for an object-wise split, measured using an IOU threshold

of 25% and an orientation threshold of 30% (see Section 4.1.6 for more details on these

metrics). On a physical robot (a PR2 (5)), they showed that the system could grasp

household objects with an 89% grasp success rate.

2.1.2. Pinto and Gupta (2016). Another variation on the Sample and Test method is the

work of Pinto and Gupta (6). Here, instead of a two-layer MLP, the authors adapted the

AlexNet backbone (7) (five convolutional layers and two fully connected layers) for grasp

classification of image patches. As in Lenz et al. (4), these image patches are centered on
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grasp candidates. However, whereas Lenz et al. classify oriented image patches, Pinto and

Gupta classify unrotated image-aligned image patches. Specifically, the AlexNet backbone

takes as input an unrotated image patch centered on a grasp candidate position and outputs

set of 18 probabilities, denoting the probability that a grasp exists in each of 18 orientations

(centered on the patch). The strength of this approach is that, unlike Lenz et al. (4)

who must sample over both position and orientation, Pinto and Gupta only sample over

grasp position, leading to a much smaller search space. This model was trained completely

online with a physical robot which performed 50k grasp attempts over 700 hours of robot

time. Ultimately, the authors demonstrated that the model could reach approximately 76%

classification accuracy on a held out dataset involving novel household objects and could

grasp novel singulated objects with a 66% grasp success rate.

2.1.3. Mahler et al. (2017). The work of Mahler et al., dubbed the Grasp Quality CNN

(GQ-CNN) or simply DexNet 2.0, is another variation on the Sample and Test method (8).

This work is similar to that of Lenz, Lee, and Saxena (3) with the following differences.

First, instead of using a two-layer MLP, Mahler et al. use a convolutional neural network

with four convolutional layers and two fully connected layers. Like Lenz et al. (4), this

model takes a 32 × 32 oriented image patch as input, it produces a binary grasp quality

prediction as output, and it is trained using a cross entropy loss. Second, instead of evalu-

ating with a lightweight model and then a heavier model, Mahler et al. use only one model.

However, rather than sampling exhaustively during grasp inference, they use the Cross En-

tropy Method (CEM) (9) to locate high quality grasps. CEM iteratively performs rounds of

grasp candidate sampling and evaluation using the model. After each round of evaluation,

a small number of high quality grasps are selected and then further sampling is performed

nearby those selected samples. The result is that DexNet 2.0 can effectively cover a large

sample space with fewer samples than would otherwise be required. The authors evaluated

DexNet 2.0 on a physical robot and obtained an 80% grasp success rate on a set of ten novel

household objects and a 94% grasp success rate on 40 objects drawn from the training set.

2.1.4. Summary. The Sample and Test method is effective, but inference is computationally

expensive because of the need to evaluate a large number of candidates.

2.2. Regression to a Single Grasp

This is another simple approach to grasp detection. The Regression to a Single Grasp

method takes a full image (not an image patch) as input and outputs a single prediction

of the pose of a good grasp. The approach assumes that each scene contains at least one

good grasp and formulates grasp prediction as a regression problem. A key limitation of

this approach is that (by construction) it can detect only one grasp per scene.

2.2.1. Redmon and Angelova (2015). Redmon and Angelova (10) were the first to propose

a grasp detection method of this type. Their model takes a single 225 × 225 image of a

scene as input and outputs a vector that encodes the (x, y, z, w, θ) pose of a good grasp,

where x, y, z encode the 3D position of the grasp, θ encodes gripper orientation about the

vertical axis, and w describes gripper aperture (width). The model was trained using an L2

regression loss using the Cornell Dataset (see Section 4.2.1). Since Cornell contains multiple

ground truth positives per image, the regression target for each image is chosen randomly
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from among these positives. Compared to Lenz et al. (3), this model must solve a more

challenging inference problem because it must locate a single grasp in an entire image. In

consequence, this model uses a full AlexNet (7) pipeline rather than the two-layer model

from (3). Nevertheless, the approach was shown to obtain an 84.9% accuracy on a test set

from the Cornell dataset using a 30 degree orientation threshold and a 25% IOU threshold.

The authors were able to improve upon this accuracy somewhat by incorporating object

classification as an auxiliary loss and inferring a separate grasp for each of a set of regions

(Section 2.3.1).

2.2.2. Kumra and Kanan (2017). Kumra and Kanan (11) take an approach that is very

similar to that of Angelova and Redmon (10) except that they use a ResNet neural network

backbone rather than AlexNet. The input is a single RGB image and the output is a single

x, y, z, w, θ grasp prediction. The model is trained using an L2 loss relative to the nearest

ground truth grasp in the training set. As would be expected, the ResNet backbone does

better than AlexNet: Kumra and Kana obtained an 88.9% accuracy on an object-wise split

on the Cornell dataset using a 25% IOU threshold.

2.2.3. Summary. Regression to a Single Grasp can be effective and efficient, but it is limited

to detecting only one grasp per image.

2.3. Region Proposal Methods

A key idea in visual object detection was the Region Proposal Network (RPN), e.g. Faster

R-CNN (12) published in 2015. Shortly after that, several papers appeared that applied

variations of this framework to grasp detection. The basic approach is to divide up the

scene into a grid of cells and predict the location of exactly one grasp per cell. This can

be viewed as a generalization of the Regression to a Single Grasp method – here we solve

a separate regression problem for each cell in the grid.

2.3.1. Redmon and Angelova (2015). In addition to the single grasp regression approach

described in Section 2.2.1, Redmon and Angelova also applied the AlexNet model to the

multi-grasp prediction problem (10). Here, the image is divided into a 7× 7 grid. For each

cell in the grid, we infer the probability that a grasp exists in that cell and the pose of that

grasp relative to the center of the cell. While this was innovative work, a key drawback

here was that the authors used a standard AlexNet model rather than a fully convolutional

model. The fully connected layers at the end of AlexNet break the spatial structure present

in the convolutional layers. This version of their method achieved 87.1% accuracy on the

Cornell dataset using a 25% IOU threshold.

2.3.2. Johns, Leutenegger, and Davison (2016). The approach proposed by Johns et

al. (13) is very similar to the multi-grasp approach of Redmon and Angelova. They use

an AlexNet model to infer grasp orientation for each cell in a 45 × 34 grid. Orientation

per cell is discretized into six categories and is trained using a binary cross entropy loss.

Relative to Redmon and Angelova, the key distinctions here are: 1) the problem is cast

as a set of binary classification problems over grasp position and orientation rather than

an L2 regression problem; 2) the model does not infer offset relative to the center of each

cell – grasp positions are assumed always to be at the center of a cell. This was the first
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Region method to be tested on a physical robot and achieved an 80.3% grasp success rate

for singulated objects on a Kinova MICO arm.

2.3.3. Zhou et al (2018). This method uses a fully convolutional ResNet-50 model (14) to

infer grasp poses over a grid (15). It outputs a coarse feature map that associates each cell

in the grid with a binary prediction of whether a grasp exists in that cell and and prediction

about the relative position and orientation of the grasp relative to the cell. It is trained

using a combination of cross entropy and and L1 regression loss. Zhou et al. evaluate

against the Cornell dataset, achieving 96.6% accuracy for a 30 degree orientation threshold

and a 25% IOU threshold on held out object categories.

2.3.4. Chu et al. (2018). Where as Zhou et al. (15) use a single ResNet-50 model, Chu

et al. (16) use a sequence of two ResNet-50 models. The first generates region proposals

and the second generates offsets. Each block has its own loss function: a combination of

a cross entropy loss and an L1 regression loss. They evaluate their model on the Cornell

dataset and obtain a 96.1% detection accuracy on a per-object basis using RGBD input

images (orientation threshold of 30 degrees and 25% IOU threshold). Notice that this is

slightly worse than Zhou et al. (15) on the same dataset and suggests that the greater

model complexity of Chu et al. (16) does not help. The method was demonstrated to grasp

singulated objects on a physical system with a 89% success rate.

2.3.5. Summary. Region proposal methods naturally extend object detection methods to

grasping. Equipped with a high capacity model like ResNet-50 (e.g. Zhou et al. (15)), these

methods outperform both Sample and Test and Regression to a Single Grasp methods.

2.4. Fully Convolutional Models

While some of the methods of Section 2.3 are fully convolutional, they only do inference

over a sparse grid of positions in the workspace. In contrast, Fully Convolutional grasping

methods infer graspability at each pixel in the input image. In the simplest case, this

amounts simply to adding convolution transpose layers to the end of the model, e.g. as in

Morrison et al. (17).

2.4.1. Zeng et al (2018). One of the first papers to explore this approach is the work of

Zeng et al. (18) who use a ResNet-101 backbone to infer planar grasp pose based on a

single top-down RGBD image of a cluttered bin picking scene. The model is explored in

the context of two end effectors: a suction effector and a gripper. In the case of the suction

effector, the ResNet-101 outputs a heatmap over the scene that encodes grasp quality at

a pixel level. The higher the output value for a particular pixel, the more likely it is that

a good suction grasp can be performed there. Grasp inference for the gripper is more

challenging because it requires specification of the gripper orientation about the approach

direction. This is one of the most interesting aspects of the approach. Rather than inferring

grasp quality for a set of different gripper orientations, Zeng et al. rotate the input image

into 16 orientations which are passed to the ResNet model as a batch. These 16 scene

orientations correspond to 16 gripper orientations. This is an example of canonicalizing the

input image – transforming the input so that different grasp orientations are aligned into a

single orientation about which the model can reason more easily. This system was an entry
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in the 2017 Amazon Robotics Challenge and scored first place in the Stowing Challenge

with a 75% pick success rate.

2.4.2. Morrison et al (2018). This model, dubbed GG-CNN (17), consists of three convo-

lutional layers followed by three convolution transpose layers. It takes a 300 × 300 depth

image as input and produces as output a stack of three 300 × 300 feature maps indicating

grasp quality, gripper width, and grasp orientation for a grasp at that pixel. It is trained

using the Cornell Dataset augmented with random translations, rotations, and zooms. At

test time, after the model infers the graspability of each pixel but before selecting a grasp,

the quality map is smoothed by applying Gaussian blur. This paper obtains images using

a camera mounted to the wrist of the robotic arm and applies the model in both an open

loop and closed loop (30 Hertz) setting. In both cases, the model was able to produce a

grasp success rate in dense clutter of approximately 92% on the Kinova Mico.

2.4.3. Asif et al (2018). This model is unusual because it does not infer grasps directly –

it is really a segmentation model for grasp affordances, i.e. it outputs a segmentation mask

around the parts of an object that are graspable (19). After generating the segmentation

mask, the model computes a mean, orientation, and width of each segmented region and

outputs this information as grasp coordinates. The model as a series of “Dilated Dense

Fire” (DDF) blocks that each incorporate a dialation layer, an expand layer, a batch norm,

and some skip connections. The model is trained using a pixelwise cross entropy loss on

ground truth segmentation masks. They integrate the DDF blocks into a U-Net like model,

ultimately obtaining an 90.2% grasp accuracy on the Cornell dataset measured with respect

to a 25% IOU threshold.

2.4.4. Satish et al (2019). In followup work to that of Mahler et al. (8), the authors re-

formulated their approach using a fully convolutional model dubbed FC-GQ-CNN (20).

This model is comprised of a series of seven convolutional layers (no convolution transpose

layers) and the output is a dense map of pixelwise probabilities of grasp success. Each

pixel in the output is associated with a vector over gripper orientation that describes the

probability of grasp success as a function of orientation. This model was trained using the

“network surgery” method where fully connected layers are converted into 1 × 1 convolu-

tional layers post-training. The neural model is actually a variant of the DexNet 2.0 model

and it was trained using a cross entropy loss on the DexNet 2.0 dataset (21). Then, it

was converted to a fully convolutional model by converting the fully connected layers using

“surgery”. An important aspect of this work is the way the z coordinate (height above the

table) is handled. The input is a stack of 96 × 96 images where each image in the stack

encodes a different gripper height by subtracting the corresponding height from each image

in the stack. This enables the model to reason about different heights as if they were the

same height. This is another instantiation of the canonicalization idea of (18). However,

instead of rotating the input image, Satish et al. add a height offset. Ultimately, this model

achieved an 87.5% success rate grasping novel adversarial singulated objects and an 85.6%

success rate grasping novel objects in clutter.

2.4.5. Kumra, Joshi, and Sahin (2020). Here, the authors propose a deep residual model

(subbed GR-ConvNet) that is similar to the fully convolutional models already described,

but is larger (more layers and more parameters) (22). Like (17), the model outputs feature
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maps over grasp quality, orientation, and gripper aperture. However, this model incor-

porates several residual blocks sandwiched between an encoder which downsamples and a

decoder which upsamples back to the original resolution. The model was evaluated on both

the Cornell dataset and the Jaquard dataset using the IOU metric with a 25% threshold.

In both cases, they found their model outperformed the methods described earlier (when

evaluated on Jaquard and Cornell), obtaining 94.6% grasp classification accuracy on the

Jacquard dataset (for RGBD images) and a 96.6% accuracy on Cornell. Ultimately, they

evaluated grasp success rates on a physical Baxter robot. They obtained a 95.4% grasp suc-

cess rate on singulated household objects, a 93% grasp success rate on singulated adversarial

objects, and a 93.5% grasp success rate in clutter.

2.4.6. Zhu et al. (2022). Another fully convolutional grasp model that bears mentioning

is the work of Zhu et al. (23) who leverage an SO(2) fully convolutional equivariant neu-

ral model. This model is similar to the model of Satish et al. (20) except that the model

incorporates SO(2) equivariant convolutional layers that encode rotational symmetries di-

rectly into the neural network model. As a result of the additional rotational structure, this

approach is dramatically more sample efficient than the other fully convolutional models

described earlier. The authors demonstrated that the approach can learn a good grasp

function with as few as 500 grasp demonstrations. As a result, the method can easily be

used to learn to grasp directly on a physical robot (see Section 2.6.4). This method was

shown to be able to grasp “easy” objects in clutter with a 95% success rate and “hard”

objects in clutter with an 87% success rate.

2.4.7. Summary. Currently, fully convolutional models are probably the best model choice

for SE(2) grasp detection. A key idea is canonicalization, an approach to inference over

different grasp orientations and heights by modifying the input images so that different

orientations or heights appear at a canonical orientation or height (24, 20).

2.5. Policy Learning for Grasping

While most learning approaches to robotic grasping focus on identifying the final hand pose

to be reached just prior to performing a grasp, there has also been work focused on policy

learning for grasping. In this setting, the objective is to learn a closed loop policy that takes

image input (and potentially proprioceptive and haptic input as well) and outputs effector

velocities that should be taken in order to reach a grasp. Formally, this policy is a mapping

π : Rc×h×w → Ẋ × Θ̇, where Ẋ ⊆ R
3 is the space of translational gripper velocities and

Θ̇ ⊆ R is the space of angular gripper velocities about the vertical axis.

2.5.1. Levine et al (2016). This work (25, 26) is essentially an application of Monte Carlo

Reinforcement Learning (RL) (27) to the grasping problem. State is a 472 × 472 RGB

image of the scene. Action is a vector in Ẋ × Θ̇, the commanded Cartesian translational

gripper displacement and an angular displacement about the vertical axis of the gripper (the

gripper is constrained to point down along the vertical axis). The Q-function is modeled

using a standard convolutional architecture (called the “prediction function” in the paper),

which takes both state and action as input and outputs a scalar value. After executing a

grasp episode (lasting at most 10 time steps), the Q-function is trained by pairing the state-

action pairs experienced during the episode with the final outcome of the episode (either
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zero or one indicating grasp success or failure). Whereas most RL models are trained using

an L2 loss, here the authors used a cross entropy loss, reflecting a view of the Q function

as a probability of grasp success rather than expected reward 1. A key challenge here is

estimating which action to take from a given state. This is hard because, unlike DQN (28),

action is an input to the model. This problem was addressed using the cross entropy method

(CEM) (9) where actions are iteratively sampled in order to find a maximal point. During

grasping, the agent executed for at most 10 time steps at a rate of between 2 and 5 Hertz.

The authors of this paper made a couple of changes to the standard Monte Carlo RL

formulation to improve sample efficiency. First, for state-action pairs belonging to episodes

that terminated in a successful grasp, the actual action taken was ignored and replaced with

the calculated displacement between the current gripper pose and the final gripper pose at

the grasp. This reduces the credit assignment problem (27) and makes the problem feel

more like a contextual bandit. However, note that this trick is only possible when actions are

transitive, as they are in this application, i.e. the net effect of a sequence of displacements

is equal to the sum of the displacements. The second way the authors improved sample

efficiency was to the use following two heuristics to control the gripper near the point of

grasping. When the Q function indicated that the probability of a successful grasp with

zero gripper velocity was greater than 90%, the first heuristic caused the robot to close the

gripper. When the probability of a grasp success dropped to less than 50%, the second

heuristic caused the robot to open the gripper and raise it some distance above the table.

One of the most interesting aspects of this system was that it was trained completely on

physical experiences produced by a “farm” of approximately 14 robotic arms (this aspect

of the work is detailed in Section 2.6.2). Ultimately, this system was able to produce grasp

success rates of between 80% and 90% on physical robotic systems. Specifically, the first 10

objects picked from a 30 object bin in clutter were grasped with a 90% success rate. The

first 20 objects were grasped with a 82.5% success rate and the total 30 objects in the 30

object bin were also grasped with a 82.5% success rate.

2.5.2. Kalashnikov et al. (2018). This method, dubbed QT-OPT (29), is similar to that

of (25, 26), but it uses a standard TD learning RL approach rather than a Monte Carlo

approach. The problem setup is nearly the same as that of Levine et al. (25): state is a

472 × 472 RGB image and action is a displacement Ẋ × Θ̇ coupled with an action that

opens or closes the gripper. The model is also essentially the same as that used in (25) –

a convolutional model that takes both state and action as input. As before, CEM is used

to find actions that maximize the Q function. As with (25), the model used in this paper

was trained on physical robots over an extended period of time. However, unlike (25), this

work uses the standard TD target, r+γmaxa∈A Q(s, a) (27). Another key difference relative

to (25) is that the gripper displacement action used on a given time step is not replaced with

the positional difference relative to the last time step. This enables this model to reason

about the gripper trajectory rather than just its end point. As a result of these differences

relative to (25), this method is able to learn pregrasp manipulation strategies that can

push objects as part of the grasp strategy in order to improve performance. The authors

documented several pregrasp pushing interactions that the method learned to improve grasp

outcomes. This method was evaluated in the same setting as (25). It achieved an 88.0%

grasp success rate for the first 10 objects picked from a 30 object bin, 88.0% for the first 20

1This view is only possible because of the sparse binary reward function used here.
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objects picked from the bin, and a 76% success rate for all 30 objects grasped from the bin.

2.5.3. Viereck et al. (2017). Unlike the methods of Levine et al. (25) and Kalashnikov

et al. (29) which use reinforcement learning, the approach proposed by Viereck et al. (30)

clones a Q function produced by a planner. The method is trained in simulation. For each

state-action pair, the Q function infers the Euclidean distance between the gripper pose

and the nearest good grasp pose after having executed the action. This model is trained

by randomly generating grasp scenes and grasp poses from which the nearest good grasp

is calculated by the planner. The model executes at approximately five Hertz and was

demonstrated to be able to grasp objects that had been moved during grasp servoing. The

method was demonstrated to be able to grasp a small set of novel household objects in

clutter with an 88.9% grasp success rate.

2.5.4. Morrison et al. (2018). Recall that the method of Morrison et al. (17) (see Sec-

tion 2.4.2) infers grasp pose pose, quality, and aperture using a fully convolutional model.

This model can be used both in open-loop and closed-loop fashion. In closed-loop mode,

the model is queried at approximately 30 Hertz and the poses of the three highest quality

grasps are obtained. The method then executes a small displacement toward the nearest

of these three grasps and the process repeats. Morrison et al. demonstrated that, like

Viereck et al. (31), this method can be used to grasp moving objects. This method was

demonstrated to reach an 87% grasp success rate for the same cluttered grasp setting as

in (31).

2.5.5. Summary. Although the policy learning problem is more challenging than the stan-

dard problem of just learning a grasp detection function, it is more powerful in at least

two ways. First, a grasp policy has the ability adapt to object motion during grasping, i.e.

to perform dynamic grasping. Second, a grasp policy has the potential to learn pregrasp

interactions such as pushing or nudging in a way that could improve grasp outcomes.

2.6. Approaches That Are Trained on a Physical Robot

Whereas most grasp learning methods are trained in simulation, a few are trained completely

on physical robotic systems. All of these methods are based on SE(2) grasping pipelines.

2.6.1. Pinto and Gupta (2016). This approach (6) was described in Section 2.1.2 and is one

of the first grasp learning methods trained entirely on a physical robotic system. Training

data was generated by executing pseudo-random grasp attempts on a Baxter robot. Objects

were presented on a cluttered table top and segmented from the background. Training

grasps were generated by sampling an object and then sampling a grasp pose around the

object, with both samples taken uniformly at random. All together, approximate 50K grasp

attempts were obtained this way over the course of 700 hours using household objects drawn

at random from a total of 150 different physical objects.

2.6.2. Levine et al. (2016). This approach (25, 26), which was described extensively in

Section 2.5.1, is essentially an application of Monte Carlo Reinforcement Learning (27) to

closed-loop grasp learning. However, one of the most interesting aspects of the work is

the fact that it was trained completely using grasp data generated over the course of 800K
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grasp attempts (episodes) obtained by running between 6 and 14 robots nearly continuously

over the course of two months. Approximately half this data was obtained by executing a

random policy with small hand coded heuristics which produced a grasp success between

10% and 30% of the time. The remainder was collected by rolling out partially trained

versions of the learned model. Ultimately, this system was able to produce grasp success

rates of between 80% and 90% on physical robotic systems.

2.6.3. Kalashnikov et al. (2018). Another approach where the model was trained using

a large amount of physical robot experience was the QT-OPT method of Kalashnikov et

al. (29). This method was trained over the course of 800 robot hours using 7 LBR IIWA

robots over four months. Grasping was performed in cluttered scenes containing between

four and ten objects. Data was obtained by initially rolling out a random policy and later

rolling out partially trained versions of the learned policy.

2.6.4. Zhu et al. (2022). The method of Zhu et al. (23) (see Section 2.4.6) obtains high

sample efficiency by leveraging an equivariant neural network model. As a result, the

authors were able to demonstrate that the method could learn to grasp on a single UR5

robot in just 500 grasps of Boltzmann exploration, obtained over the course of approximately

an hour and a half. This is much faster than any of the other methods described above.

2.7. Summary of SE(2) Methods

Table 1 summarizes the performance of the various methods described in this section in

terms of performance on the Cornell detection benchmark and grasp success rates on a real

robot. Cornell IOU is the Intersection Over Union performance (see Section 4.1.6) of the

method for an object-wise training/test split and a 25% IOU threshold, 30% orientation

threshold. Singulated Objects GSR is the grasp success rate on a physical robot for novel

objects (not seen during training) presented either in isolation or sufficiently far apart to

allow for easy segmentation. Clutter Pile GSR is the grasp success rate on a physical robot

for novel objects presented in clutter. The five vertical groupings of the methods correspond

to the methods covered in Sections 2.1 through 2.5, respectively.

The only column in Table 1 that should be used to compare methods in a precise

way is Cornell IOU. All methods that use this benchmark are using exactly the same test

set. It is critical to recognize that the same is not true for the grasp success rates we

report in Singulated Objects GSR and Clutter Pile GSR in Table 1. Those are the results

from physical robotic experiments and depend on the object set used for evaluation and

the physical robotic setup. A paper that evaluates grasp success using objects that are

challenging to grasp is disadvantaged relative to a paper that uses easy objects. Different

robotic setups can also have an effect. While these differences have even more pronounced

effects in the SE(3) (Table 2), they are also important here.

2.7.1. Discussion. Based on Table 1, the model used by Kumra et al. (22) stands out

because it scores highly on Cornell and also has a high grasp success rate in clutter. However,

one should be cautious here. The clutter grasp setting used in (22) is probably easier than

some others, for example Kalashnikov et al. (29) or Satish et al. (20). Perhaps the main

conclusion to draw is that the fully convolutional model class (the fourth vertical grouping

in Table 1) is currently probably the most competitive choice for a SE(2) grasping model
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Table 1 Comparison between SE(2) grasp methods.

Singulated Clutter

Cornell Objects Pile Object

Method IOUa GSRb GSRc Robot

Lenz, et al. (4) 75.6% 89% PR2

Pinto and Gupta (6) 66% Baxter

Mahler et al. (8) 94% / 80%d ABB Yumi

Redmon and Angelova (10) 87.1%

Kumra and Kanan (11) 88.9%

Johns et al. (13) 80.3% Kinova

Zhou et al. (15) 96.6%

Chu et al. (16) 96.1% 89% Custom

Zeng et al. (18) 75%e ABB IRB

Morrison et al. (17) 92% 87% Kinova

Asif et al. (19) 90.2%

Satish et al. (20) 85.6% UBB Yumi

Kumra et al. (22) 96.6% 93.5% Baxter

Zhu et al. (23) 87% UR5

Levine et al. (25) 82.5%f Custom

Kalashnikov et al. (29) 88.5%f Custom

Viereck et al. (30) 88.9% UR5

aCornell IOU as reported here is measured using a 25% IOU threshold and a 30% orientation threshold.
bGrasp success rate for singulated novel objects not seen during training.
cGrasp success rate for objects piled in clutter, as in the bin picking setting.
d80% GSR for novel objects; 94% GSR for objects seen during training.
ePick success rate for the 2017 Amazon Robotics Challenge (ARC) final stowing challenge.
fGSR for first 20 objects removed from a 30 object bin.

architecture. Three of the other models – sample and test, regression, and region proposal

– all seem somewhat outmoded now. However, policy learning is probably an area that will

receive continued attention into the future because of its ability to learn closed loop policies

rather than just to detect grasp poses.

3. GRASPING IN SE(3)

Given a point cloud or other volumetric representation of a scene, the problem of grasping

in SE(3) is to identify a set of SE(3) hand poses from which a grasp is feasible. As such,

the SE(3) grasp learning can be expressed as the problem of finding a function f : R3×n →

SE(3)k that maps from a cloud of n points in R
3 to a set of k grasp poses. Grasp learning

in SE(3) is often approached using very different neural network models than it is in SE(2).

Whereas fully convolutional are typically the best performing SE(2) grasp models, SE(3)

grasp detection has been tackled using a variety of models including point models, 3D

convolutions, graph neural networks, and variational autoencoders.

3.1. Hypothesize and Test Methods

As was the case in SE(2) grasp learning, the earliest approaches to SE(3) grasp detection

were hypothesize and test methods where grasp detection is decomposed into two phases.
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In the first phase, a large set of potential grasp candidates (6-DOF hand poses that could

be good grasps) are generated. In the second phase, a classification model is queried which

infers whether each candidate is a good grasp. This model is queried separately (or in

batches) over the candidates.

3.1.1. Gualtieri et al. (2016). One of the earliest approaches to novel object grasping in

six dimensions is the work of Gualtieri et al. who proposed a method dubbed Grasp Pose

Detection (GPD) (32, 33). This is a hypothesize and test method where grasp candidates

are generated by sampling SE(3) hand poses in the vicinity of points in the cloud. In order

to sample a grasp, this approach first samples a point from the cloud and then estimates

the local Darboux coordinate frame at the sample 2. A grasp candidate is then sampled

using heuristics defined with respect to the Darboux frame. Candidates where the gripper

is in collision with points in the cloud or do not contain a point from the cloud within

the closing region of the gripper are pruned. Once sampled, the system makes a binary

prediction about whether each candidate is a grasp or not. This prediction is based on

a representation of the volumetric region contained between the fingers of the gripper, as

expressed in the reference frame of the grasp candidate. This volume is expressed as a

stack of three orthographic projections and is input to a small convolutional model. This

gripper-frame representation of the grasp can be viewed as another type of canonicalization

where grasps in different poses are expressed in a constant reference frame. Under ideal

conditions, this approach was shown to have approximately a 93% grasp success rate in

dense clutter for novel household objects.

3.1.2. Liang et al. (2019). This method, dubbed PointNetGPD (34) is very similar to

GPD. The key distinction is the grasp classification model. Both PointNetGPD and GPD

made grasp predictions based on a representation of the part of the cloud contained in the

volume between the gripper fingers. However, whereas GPD represents this volume using an

ordinary convolutional model operating on orthographic projections of the contained points,

PointNetGPD uses a PointNet model. The method was compared with GPD and shown

to have somewhat higher grasp success rates. However, like GPD, it requires a separate

evaluation of the model for each batch of grasp candidates.

3.1.3. Mousavian, Eppner, and Fox (2019). Another Hypothesize and Test method is the

work of Mousavian, Eppner, and Fox (35), dubbed GraspNet. In contrast to GPD and

PointNetGPD which generate grasp samples using heuristics, this work uses a variational

autoencoder (a VAE (36)) to generate the grasp candidates. The method assumes that it

is given a segmented partial point cloud that corresponds to the object of interest. The

VAE model is defined as follows. Let G denote a grasp, X denote a point cloud, and z

denote a latent variable. Both encoder and decoder are conditioned on the point cloud. The

encoder is a model Q(z|X, g) and the decoder is a model P (G|X, z). This model is trained

using the standard VAE loss that combines a reconstruction term with the VAE regularizer

which biases the latent variable toward the standard Normal distribution. Both the encoder

and decoder are implemented using PointNet++ (37). The gripper pose is encoded to the

2The Darboux reference frame at a point on a smoothly curved surface is defined by the or-
thonormal basis consisting of the surface normal, the axis of principle curvature, and the binormal
direction.

www.annualreviews.org • Grasp Learning 13



model as a set of points on the surface of the gripper that are added to the point cloud,

with special features indicating their identity as gripper points. After the model is trained,

grasp candidates can be generated by sampling from the standard Normal distribution and

evaluating the decoder P . After sampling a set of grasp candidates from the VAE decoder,

they are evaluated using a PointNet classifier. Again, points belonging to the gripper are

added to the object point cloud. Then, the model is passed to a PointNet model which infers

a binary grasp quality (trained with a cross entropy loss). Like PointNetGPD, a separate

pass through the PointNet model is required for each sample. After identifying a set of

good grasps, this method lastly performs a refinement step that makes small adjustments

to grasp pose. The method is evaluated on four categories of household objects: boxes,

cylinders, bowls, and mugs where they obtained an 88% grasp success rate in physical

robotic experiments. The most important aspect of this work is its novelty. The idea of

using a VAE to sample grasps is interesting and potentially powerful. Unfortunately, this is

a heavyweight model and the need to evaluate and refine a large number of grasp samples

can be computationally intensive.

3.1.4. Murali, Mousavian, Eppner, Paxton, and Fox (2020). This is an extension of (35)

where the authors augment the grasp quality evaluator with a collision detector that is

applied after a set of high quality grasps are identified (38). The collision detection model

is similar to the grasp evaluation model, but the PointNet++ model takes as input a slightly

large point region around the target object in order to model possible collisions with those

objects. The model is shown to outperform (35).

3.1.5. Summary. While effective, Hypothesize and Test methods can be computationally

slow because they must evaluate a classification model for a large number of grasp candi-

dates.

3.2. Grasp Inference Using Point Models

An alternative to the Hypothesize and Test method is to leverage a point-based model like

PointNet (39) or PointNet++ (37) to infer grasp pose. These models take a point cloud of

an object or an entire scene as input and infer a set of grasp poses in a single forward pass

of the model. This avoids the need to repeatedly evaluate a grasp quality model separately

for each grasp candidate.

3.2.1. Qin et al. (2020). The work of Qin et al. is an unadorned instantiation of this

idea, resulting in a model dubbed S4G (40). An unsegmented point cloud is passed into a

PointNet++ model, producing a feature vector for each point. Then, a sparse point set is

created by pooling feature vectors based on 3D distance. Finally, a prediction about grasp

quality and orientation is made at each of the sparse points. The model infers a gripper

orientation which is represented as a pair of vectors in R
3 and converted into a rotation

matrix using Gram Schmidt orthogonalization. A set of high scoring grasps are selected

and the corresponding grasp poses identified. The method is found to outperform GPD

and PointNetGPD in simulated experiments. Ultimately, they show a 77% grasp success

rate in dense clutter in a tabletop scenario using a Kinova Jaco2 arm.
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3.2.2. Sundermeyer et al. (2021). This model, dubbed Contact-GraspNet (41), is similar

to that of Qin et al. (40). The authors use a PointNet++ model which takes a point cloud

of the scene as input and infers grasp quality and orientation at a set of points. As in Qin

et al., orientation is represented as a pair a vectors in R
3 which are used to reconstruct a

rotation matrix using Gram Schmidt orthogonalization. Probably the key difference relative

to Qin et al. is that they constrain grasps to contact the object surface at the observed

point rather than inferring simply whether a grasp exists anywhere nearby. The resulting

model is shown to perform favorably relative to some of the authors’ prior work (35) with

an 84.31% grasp success rate for household objects presented in clutter.

3.2.3. Wu et al. (2020). This model (42) also consists primarily of a single PointNet++

backbone also, but is a bit more complex than that of Qin et al. (40). It takes a segmented

partial point cloud of an object as input which is passed to the PointNet++ model which

generates per-point features. Grasp candidates are generated based on the cross product

between points in the cloud and the 3D grid of voxel positions in the workspace. Every

pair of a cloud point with a voxel position is a potential grasp candidate. These candidates

are pruned using geometric conditions. For each candidate, a score and regressed pose is

generated. The method was compared primarily to the work of Mousavian et al. (35) in

terms of the success-ratek and coverage-ratek metrics (Section 4.1.2). They achieve an 85%

grasp success rate for singulated household objects.

3.2.4. Zhao et al. (2021). These authors extend the S4G model of Qin et al. (40), producing

a three stage model dubbed RegNet (43). The first stage (the “score network”) is essentially

the same as S4G: a PointNet++ model is used to infer grasp quality at each point in the

cloud. Then, for points determined to have a high grasp quality, the “grasp region network”

infers grasp orientation as a categorical distribution over a set of approach directions and

approach angles. This prediction is made based on a feature representation obtained by

pooling the PointNet++ features over a neighborhood of points around the query point.

Finally, in the third stage (“grasp refinement”), a canonical hand-centric crop is taken

around high quality grasp points and used to infer a new quality prediction and a residual

pose relative to the discrete pose found in the second phase. This is a complex model, but

the three phases make sense. Their results show that, with a 79.34% grasp success rate for

challenging household objects presented in clutter, the model outperforms S4G (40) as well

as PointNetGPD (34) and GPD (33).

3.2.5. Wei et al. (2021). This model (44) is similar to RegNet (43) except that it has two

stages instead of three. The first infers a set of grasp candidates and the second evaluates

those candidates in a canonical hand-centric reference frame. The first stage takes a point

cloud input of an entire scene as input and passes it to a PointNet++ backbone which infers

the grasp quality of each point and the associated grasp orientation. Then, after doing non-

maximum supression on detected grasps, each candidate is expressed as a cropped point

cloud in a canonical hand-centric reference frame and classified using another (smaller)

PointNet++ model. This model is shown to achieve a 69.2% grasp success rate in clutter

comprised of challenging household objects. It performs favorably relative to GPD (33) and

PointNetGPD (34), but is not compared against S4G (40).
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3.2.6. Summary. Grasp inference using Point based models like PointNet++ could have a

bright future in SE(3) grasp learning since they have the ability to reason about grasps over

an entire object or scene efficiently in a single pass. Currently, this work has been restricted

to PointNet++ and related models, but a variety of other point based models exist that

have not yet been explored in the context of grasping, e.g. (45).

3.3. Grasp Inference Using 3D Convolutional Models

Since fully convolutional models are state of the art in SE(2) grasp learning, it makes

sense to try to extend the idea to SE(3) grasping. 3D convolutional models do exactly

this. The input to the model is a voxelized occupancy grid or a voxelized truncated signed

distance function (a TSDF). The output is a per-voxel estimate of the quality and pose of

one grasp per voxel. Unfortunately, the 3D convolutions used by these models is typically

computationally expensive.

3.3.1. Breyer et al. (2021). This approach, dubbed Volumetric Grasp Network (VGN)

is analogous to the fully convolutional approaches described in Section 2.4 where the 2D

convolutional layers have been replaced with 3D convolutional layers (46). The input is a

truncated signed distance function (a TSDF): a 40 × 40 × 40 voxel grid where each voxel

is labeled with its distance to the nearest object surface (distance above a threshold are

capped). Unlike (35), this model does not require segmented objects at the input – it can

handle complete scenes. The model consists of three 3D strided convolutional layers followed

by three dense 3D convolutional layers interleaved with 2× bi-linear upsampling. The results

is a fully convolutional 3D model with three heads that predict grasp quality, orientation

(represented as a quaternion), and gripper aperture. The loss function is a combination of a

binary cross entropy loss and standard L2 regression. The model was evaluated on a Panda

robot and was found to perform favorably relative to GPD (33), reaching an 80% grasp

success rate for household objects presented in clutter. However, since their setup creates

a point cloud by fusing points generated from six different viewpoints, these authors are

evaluating their performance on an easier inference problem relative to many of the other

works described here.

3.3.2. Cai et al. (2022). Another method which relies heavily upon 3D convolutions is the

method of Cai et al., dubbed the volume point network (VPN) (47). There are two stages

of this method. In the first stage, a TSDF is input to a fully convolutional stack of 3D con-

volution layers which outputs a 3D map of equal resolution as the input. It is assumed that

all grasps will approach the object along the estimated surface normal at the grasp point.

Each voxel in the output is associated with a vector of quality estimates corresponding to

a discrete set of approach orientations (measured about the surface normal). Once a set of

good grasp poses are identified using the fully convolutional model, these grasps are refined

using a second 3D fully convolutional model. These authors perform experiments in a clut-

tered grasping setting, demonstrating a 91% grasp success rate for challenging household

objects and a 78.43% grasp success rate for 12 of the 13 Dex-Net adversarial objects.

3.3.3. James et al. (2022). Because 3D convolutions are so computationally expensive, it is

typically impractical to reason about the volume of the scene at a fine level of discretization,

e.g. Breyer et al. (46) infer grasps at a resolution of just 403. James et al. circumvent this
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problem using hierarchy (48) in the context of Q learning. Specifically, they represent the Q

function as a hierarchy of two Q models which we denote as Qcoarse and Qfine. First, given

a coarse voxelized representation of a scene, Qcoarse is used to infer the approximate 3D

position of a grasp xcoarse. Then, the volume in the neighborhood of xcoarse is voxelized at

a finer level of resolution and passed to Qfine which infers the exact position and orientation

of the gripper needed to grasp. The key advantage of this approach is that it is possible

to reason at a fine level of resolution without representing the entire scene this way. This

this paper does not explicitly focus on grasping per se, there are no reported grasp success

rates.

3.3.4. Summary. Grasp inference using 3D convolutions is attractive because is simple and

analogous to successful approaches in SE(2). However, the computational burden of 3D

convolution is a serious drawback.

3.4. Grasp Detection via Shape Completion

Grasping via shape completion is an intuitively attractive approach. If the 3D geometry of

an object can be reconstructed from observations, then a variety of grasp planning methods

can be used to find grasps (1, 2). This approach has been explored by several researchers,

but has not been as successful as other methods.

3.4.1. Varley et al. (2017). The focus here is primarily on shape completion, rather than

on the grasping problem (49). At the time this paper was published, shape completion

was not well studied. The authors proposed a 3D convolutional model which did shape

reconstruction on a 404 voxel grid: three 3D convolutions followed by some fully connected

layers. The model was trained using a voxel-wise binary cross entropy loss. After performing

completion, the model was converted into a mesh using the marching cubes algorithm (50)

and then smoothed using various gap filling methods and by minimizing the Laplacian of the

surface. Given the mesh model, grasp detection happened using standard grasp planners

available via GRASPIT! (51). These authors report a 93% grasp success rate on singlulated

household objects.

3.4.2. Lundell, Verdoja, and Kyrki (2019). A key problem with the approach of Varley et

al. is that is fails to deal with uncertainty in the shape completion. Completing an entire

3D shape based on a partial point cloud is naturally an uncertain process and it seems that

this uncertainty should be taken into account during grasp synthesis. This is exactly the

idea that Lundell, Verdoja, and Kyrki explored (52). The idea here is to develop a method

of sampling from a distribution of possible shape completions rather than simply assuming

the most likely completion to be accurate. By sampling different ways of completing a

given shape, these authors can rank a set of grasps based on how many different possible

completions each grasp would be valid for. The finally accepted grasp would be the one that

would succeed most often over the space of different shape completions. This idea can be

viewed probabilistically as marginalizing the grasp ranking over the distribution of possible

shape completions. The shape completion model is a 3D convolutional UNet model that

has a Monte Carlo Dropout at the center, which is used to sample different completions.

In their experiments, the authors here reported a small improvement relative to Varley et

al. (49), achieving a 58% grasp success rate on singulated objects.
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3.4.3. Lundell, Verdoja, and Kyrki (2020). This paper uses scene completion to enable a 2D

grasp detection method (in this case FC-GQ-CNN (20)) to detect grasps in 6-DOF (53).

This is a simple idea. First, they use scene completion to create a relatively complete

model of the scene. Then, they render a height map of the scene from different possible

grasp approach directions. Finally, they detect grasps in these different height maps using

FC-GQ-CNN, thereby effectively detecting 6-DOF grasps. These authors do not report

grasp success rates on a real robot.

3.4.4. Yang et al. (2021). This paper uses a shape completion approach to improve grasps

originally found using a standard grasp detection method (54). First, a grasp candidate

is detected using standard convolutional model that takes a stack of top-down images as

input and outputs a single 6-DOF grasp detection (no shape completion information is used

as this stage). This detection is refined by centering the grasp on the reconstructed points.

The authors report a 84% grasp success rate for singulated household objects presented on

a table top.

3.4.5. Van der Merwe, et al. (2020) and Jiang et al. (2021). It is not completely clear

that the right application of shape completion to grasping is as a preprocessing step for

grasp planning. An alternative proposed by Van der Merwe, et al. (55) and later by Jiang,

et al. (56) is to use a shape completion objective as a regularization term in the context

of grasp learning. As will be discussed more in Section 3.5.1, both these methods use an

implicit representation where the model takes position as input and infers the grasp quality

at that query point. However, these models also predict the signed distance of the query

point to the object surface. Both papers report that this extra regularization term can

improve grasp quality inference.

3.4.6. Summary. The idea of using shape completion methods to generate a complete ge-

ometry of an object from which grasps may be planned is attractive. Unfortunately, these

methods have not yet been wildly successful. Shape completion is clearly a very challenging

inference problem and it could be that direct grasp inference is simply easier.

3.5. Implicit Shape Approaches to Grasp Inference

Recently, spurred by the success of NeRF (57) as an approach to novel view synthesis in

computer vision, a few approaches have have explored implicit models for grasping. These

methods take as input both a volumetric representation of the scene and a set of 3D grasp

query positions and infer the grasp quality and gripper orientations associated with the

input query points.

3.5.1. Van der Merwe, et al (2020). One of the earliest works on implicit 6DOF grasp

detection is the work of Van der Merwe, et al (55) which they dubbed PointSDF. This

model takes shape observations as input along with a set of 3D query points and infers the

grasp quality and gripper orientation at the query points. The shape is input as a partial

point cloud and passed to a PointConv model (58). This provides a feature representation of

the global shape the is then flattened, combined with the 3D positions of the query points,

passed through multiple fully connected layers, combined with the grasp orientations at the

query points, and finally passed through more fully connected layers to produce a grasp
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quality prediction. Since grasp pose is an input to this model, a key challenge with this

approach is to identify a good grasp pose. This is accomplished by sampling an initial

pose and then following the gradient of the neural model calculated with respect to the

grasp orientation input until reaching a maxima (this is similar to the refinement step

of (35)). A key aspect of this work is the addition of shape reconstruction as a regularization

objective (see Section 3.4.5). In addition to inferring grasp quality, this model also infers the

signed distance from the object surface of the query points. The authors presented results

that demonstrate that optimizing for this additional objective during training significantly

improves the performance of grasp inference. Ultimately, the method was demonstrated to

be able to achieve a 60% grasp success rate on eight household YCB objects presented in

isolation.

3.5.2. Jiang, et al. (2021). Another approach that takes a volumetric TSDF representation

as input is the Implicit Geometry and Affordance (GIGA) method of Jiang, et al. (56). This

approach is similar to the method of Van der Merwe, et al. (55): they represent the 3D

scene using an implicit model and they regularize grasp predictions using an auxiliary shape

reconstruction loss (in this case an occupancy probability rather than a signed distance.).

Perhaps the most interesting thing here is the model itself: the model passes the TSDF input

to a 3D convolutional layer. Then, the features are projected orthographically onto three

orthogonal basis planes and passed to a standard UNet model. Finally, the UNet feature

maps are projected to some fully connected layers with skip connections which output both

grasp and occupancy predictions. A key difference here relative to Van der Merwe, et al. is

that the model produces grasp orientation as an output rather than an input – this makes it

much easier to locate grasps. As in Van der Merwe, et al., these authors also report results

that show that the auxiliary shape reconstruction objective during training can improve

grasp detection performance. Ultimately, the model is demonstrated to achieve a 70%

grasp success rate using a Panda arm for densely cluttered household objects presented on

a tabletop.

3.6. Inferring SE(3) Grasps Using SE(2) Methods

Whereas most approaches to SE(3) grasp detection infer grasp pose from point cloud or

voxel input, a few methods attempt to extend SE(2) methods.

3.6.1. Berscheid et al. (2021). This approach uses a fully convolutional model to infer

the position and top-down orientation of a grasp, and then use heuristics to determine the

out-of-plane orientation variables (59). They infer the planar position and orientation of a

grasp using a fully convolutional model comprised of a stack of eight dilated convolutional

layers. As in (24), they provide a stack of rotated input images to the model, thus implicitly

evaluating grasp quality for a stack of different gripper orientations. Once an x, y, θ pose

is selected using the fully convolutional model, the hand-coded strategy selects the two

out-of-plane orientations that are used when executing the grasp. They frame grasping as

a contextual bandit problem with Boltzman exploration. The result is an ability to grasp

in 6-DOF that one would expect to learn at a similar rate to planar grasp methods. In

bin picking experiments for challenging household objects presented in clutter, the authors

report their method achieves a 92.1% grasp success rate on the first 20 objects grasped from

a 30 object bin.
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3.6.2. Kasaei and Kasaei (2021). This approach, dubbedMVGrasp, also uses a fully convo-

lutional 2D model to infer grasps in 3D (60). However, instead of determining out-of-plane

orientations using heuristics, this method simply re-runs the 2D procedure from multiple

different out-of-plane approach directions. The method starts by segmenting an object of

interest. Then, an Eigenvalue analysis of the convariance matrix of the object points is per-

formed, thereby producing three orthogonal approach directions and three corresponding

planar views. One of these views is selected based on pixelwise image entropy and then

grasp detection is performed using a fully convolutional model. The authors report that the

method can achieve a 92% grasp success rate for household objects in clutter. The results

show their method performs favorably relative to GPD (33) and GG-CNN (17).

3.6.3. Summary. Approaches to SE(3) grasping based on SE(2) methods are simple and

work well in practice. However, these methods are not as flexible as other SE(3) grasp

learning methods and will not suit all applications.

3.7. Summary of SE(3) Methods

Unlike SE(2) grasping where the Cornell benchmark has become a standard, there are no

benchmarks that are widely used in SE(3) grasping. As a result, it is difficult to compare

SE(3) grasping methods in a precise way. Here, we list grasp success rates from physical

robotics experiments as shown in Table 1. Grasp success rates (GSR) are listed in one of two

settings: either the Singulated Objects GSR where objects are presented apart from others on

a table or the Clutter Pile GSR where objects are piled up randomly, as in the bin picking

setting. The Object Type column in Table 2 characterizes objects in one of three ways.

Household: Common household objects resembling cylinders, boxes, and other amorphous

object shapes; does not include screwdrivers or other thin objects. Challenging: Complex or

thin household object shapes such as screwdrivers, forks, or objects with complex geometry.

Adversarial: 3D printed objects of shapes considered to be challenging to grasp, e.g. the

DEXNET adversarial objects (61) or the EGAD! objects (62). The Camera View column

describes the number of RGBD cameras used. Most of these methods are “single” view,

meaning that only a single camera is used. The six vertical groups in Table 2 correspond

to the methods covered in Sections 3.1 through 3.6, respectively.

3.7.1. Obstacles to a Fair Comparison. It is critical to recognize that the grasp success rates

listed in Table 2 are not directly comparable to each other. The problem is that different

researchers use different benchmarks for their physical experiments. There are three main

issues. Different object sets: This is the biggest problem. The object set used to evaluate

physical grasping performance is slightly different for nearly every method discussed in this

section! One paper might have a lower grasp success rate because they evaluate on more

challenging objects while another might have a high grasp success rate because they evaluate

on easy objects. Different perceptual systems: Most of the methods reviewed here evaluate

physical performance using a point cloud generated by a single depth sensor. However,

some methods like (63) and (46) generate a fused point cloud or voxel grid using SLAM

or a point registration technique. This gives those methods an advantage because they

“see” more of the world than would be visible to a single sensor. Different Robots: For

the most part, this is a minor difference. With the exception of the Baxter, Kinova, and

Barrett robots, these robots all have very precise position control and should therefore be
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Table 2 Performance of the SE(3) grasp methods reviewed in this section.

Singulated Clutter

Objects Pile Object Camera

Method GSRa GSRb Typec View Robot

Gualtieri, et al. (32) 93% Household Multi Baxter

Liang et al. (34) 89.33% Household Single UR5

Mousavian et al. (35) 88.3% Household Single Panda

Qin et al. (40) 77.1% Household Single Kinova

Sundermeyer et al. (41) 84.31% Household Single Panda

Wu et al. (42) 85% Household Single UR5

Zhao et al. (43) 79.34% Challenging Single Baxter

Wei et al. (44) 69.2% Challenging Single ABB Yumi

Breyer et al. (46) 80% Household Multi Panda

Cai et al. (47) 78.43% Adversarial Single Barrett

Varley et al. (49) 93% Household Single Barrett

Lundell et al. (52) 58% Household Single Panda

Van der Merwe, et al. (55) 60% Household Single Panda

Jiang, et al. (56) 86.9% Household Single Panda

Berscheid et al. (59) 92%d Challenging Single Panda

Kasaei and Kasaei (60) 92% Household Single UR5

aGrasp success rate for singulated objects on a table top.
bGrasp success rate for objects piled in clutter, as in the bin picking setting.
cObject type categorization is made by the author of this review.
dGrasp success rate for first 20 out of 30 objects grasped.

comparable.

3.7.2. Discussion. The results shown in Table 2 do not suggest any obvious conclusions.

As noted above, one must not simply rank methods by their performance in the Clutter

Pile GSR column. That reasoning would suggest that Gualtieri et al. (63, 33) is the best

performing method – something that is certainly untrue because more than half the meth-

ods listed benchmark directly against (63) and show outperformance. Nevertheless, a few

methodological conclusions can be drawn. First, the hypothesise and test methods of Sec-

tion 3.1 seem a little dated. These methods are inefficient because they require a grasp

classification model to evaluate a large set of candidates. Second, a variety of models have

been explored based on PointNet or PointNet++ architectures and none of these seems to

be a clear winner. Third, the two methods based on shape completion, Varley et al. (49)

and Lundel et al. (52) seem to underperform the other methods significantly. For the other

two major model architecture classes – 3D convolutions and implicit models – these could

be promising directions for research, but it is too early to say. The two methods based on

extending SE(2) archiectures into SE(3) – Berscheid et al. (59) and Kasaei and Kasei (60) –

seem to perform very well in practice, but the fact that they are essentially SE(2) methods

seems like a major limitation.
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4. GRASP METRICS AND EVALUATION

Like many applications of machine learning, grasp learning methods are typically evalu-

ated empirically. As such, performance metrics and evaluation datasets are essential when

evaluating how well a new method works.

4.1. Performance Metrics

There is a surprising variety of performance metrics used in grasp learning. This variety

reflects the different settings in which grasp methods operate and the performance criteria

relevant to different applications.

4.1.1. Grasp Success Rate. The most basic grasp performance metric is the grasp success

rate, the proportion of grasp attempts that are successful, i.e. grasp trials where the robot

has successfully grasped and lifted an object above a threshold height. This can be measured

either in simulation or on a physical robotic system. Grasp success rate is often measured

in two different settings: when grasping objects that are presented in isolation (i.e. there

is nothing else on the table) or when grasping objects presented in dense clutter, i.e. when

objects have been deposited into a pile or bin in an unstructured way. Grasping objects

in isolation is generally considered to be an easier problem. Although grasp success rate is

obviously an important metric, it does not capture the difficulty of the grasp setting and it

ignores how the object was grasped.

4.1.2. n out of m Grasp Success Rate. When grasping in dense clutter all objects from

a bin, it is typically the case that the algorithm attempts to grasp the easiest objects

first, thereby obtaining higher grasp success rates early during bin clearing and lower grasp

success rates later. As a result, it is common to measure grasp success rates separately for

the first n out of m objects. For example, Kalashnikov et al. evaluate grasp performance

using bins that contain 30 objects. They measure grasp success rates separately for the first

10, 20, and 30 objects (29).

4.1.3. Completion Rate. A high grasp success rate does not imply that a system is able

to reliably remove all items from a bin – it could be that the system always fails to grasp

the last item. Nevertheless, bin clearing is often an important objective in industry. The

ability of a system to clear a bin is captured by completion rate. It is assumed that a

series of bin clearing trials are performed where the bins are always loaded with the same

number of objects. The completion rate is the proportion of bin clearing trials that were

successful, i.e. where the robot cleared all objects from the bin (44). Grasp completion rate

and grasp success rate are in tension in the sense that lowering the confidence threshold

at which a system is willing to attempt a grasp could increase completion. As a result, it

is possible to carve out a pareto front, similar to a precision-recall curve, by varying the

grasp acceptance threshold. This success-completion curve itself is another relevant grasp

performance metric.

4.1.4. Coverage Rate. Another metric relevant to grasping is coverage, the degree to which

a grasp algorithm can find all the ways in which an object can potentially be grasped (35).

Given a set of grasps that are known to exist on an object, the coverage rate is the proportion

of those grasps that are detected by the algorithm. This measure is most relevant to SE(3)
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grasping methods rather than SE(2) methods because it is only in SE(3) that there are

enough different ways of grasping an object to be concerned about coverage. Together with

the grasp success rate, the coverage rate also define a pareto front similar to the success-

completion curve described above or the precision-recall curve. In fact, the coverage rate is

exactly analogous to recall (the proportion of true positives that are detected by a classifier).

Unfortunately, the notion of coverage in grasping suffers from a key problem – the space

of feasible grasps on an object is continuous, not discrete. As a result, in order to define

coverage, we must sample the space of feasible grasps in order to create a grasp set. However,

since the coverage rate will be slightly different depending upon how grasps are sampled, it

is difficult to obtain a fair comparison using this metric unless the set of possible feasible

grasp samples is fixed per object – something which is possible, but not currently part of

most object datasets.

4.1.5. Picks Per Hour (PPH). Another grasp metric that has been used in the literature

is Picks Per Hour (PPH) (20). This metric simply measures the number of objects that

are grasped successfully by a physical robotic system in the space of an hour. This metric

is nice because it measures throughput – something which is often important in industrial

applications. Unfortunately, because it measures end-to-end performance, PPH depends a

lot on the implementation details of the system (e.g. how fast the robot arm can move)

and may not reflect the potential of the method.

4.1.6. Intersection Over Union (IOU). Intersection Over Union (IOU) is a metric that is

predominantly used in object detection, but was adopted into grasp detection by (64, 3).

IOU is typically used in the context of measuring performance using SE(2) datasets such as

the Cornell Dataset (65) and the Jacquard Dataset (66). Since these are SE(2) datasets, a

grasp can be expressed as a box in the image that is centered and aligned with the gripper

position and orientation. If desired, the length of the box can encode gripper width. Given

a ground truth bounding box showing the true pose of a grasp and an inferred bounding box

showing the predicted pose of a grasp, the IOU measures the ratio between the intersection

of these boxes and the union of the boxes. If the boxes are disjoint, then IOU is zero. Using

IOU, it is possible to evaluate grasp performance as detection accuracy. Given a set of

ground truth grasps known to exist in an image, accuracy is the proportion of these grasps

for which the IOU (measured with respect to the nearest grasp prediction) is above some

threshold, often 25% or 30%. Often, the orientation error between the grasps must also

be below a threshold, typically 30 degrees. Grasp performance measured using Cornell or

Jaquard is nearly universally measured using this metric.

4.1.7. Instance-wise Versus Object-wise Splits. The objective of grasp learning is typically

to be able to grasp novel objects – objects not seen during training. This requires us to

be careful about how the dataset is “split” between training and testing. There are two

obvious choices regarding how to split the data: the instance-wise split and the object-wise

split. With the instance-wise split, the training and test sets may contain objects from the

same object categories, e.g. there might be coffee mugs in both the train and test sets.

However, the test set may only contain object instances (i.e. specific object geometries)

not seen during training. With the category-wise split, we go one step further and require

the test set to contain objects belonging to categories not seen during training. So, for

example, if there are coffee mugs in the test set, then there may not be any coffee mugs in
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the training set. Obviously, the object-wise split is the more challenging scenario and we

would expect grasp success rates to be lower there.

4.2. Grasp Datasets in SE(2)

Several datasets are available for measuring grasp performance in SE(2). These datasets

are typically comprised of a set of images, each of which is labeled with one or more ground

truth grasps.

4.2.1. Cornell Dataset (2011). The first grasp dataset to have a major impact on robotic

grasp learning was the Cornell Dataset (65). This dataset is comprised of 885 top-down

RGBD images paired with a total of 8019 ground truth grasps that are hand labeled.

As described in Section 4.1.6, a grasp is expressed as a grasp rectangle defined by five

parameters: two parameters that denote rectangle position, two parameters that denote

gripper height and width, and one parameter that denotes orientation. Grasp detection

performance is measured as detection accuracy with respect to the IOU metric, generally

with a 25% IOU threshold and a 30% orientation threshold.

4.2.2. Jacquard Dataset (2018). The Jacquard dataset can be viewed as a larger and more

objective version of the Cornell Dataset. Jacquard contains 54K images generated in sim-

ulation using Blender. The images are generated using 11K unique object mesh models.

Each image is labeled with multiple grasp rectangles (the same representation used in Cor-

nell) that roughly cover the space of possible grasps, for a total of 1.1M grasp labels. The

labels are generated automatically by sampling a large number of possible grasps at random

and simulating them in PyBullet to evaluate their quality. As with Cornell, performance in

Jacquard is measured as accuracy with respect to a 25% or 30% IOU detection threshold.

4.2.3. DexNet Dataset (2017). Another planar dataset that is sometimes used is the

DexNet 2.0 dataset comprised of approximately 6.7M depth images created using 1500

mesh models generated in simulation (8). Each depth image is labeled with up to 100 grasp

detections, obtained using a grasp planning method on the underlying mesh models. These

object models were selected from 3DNet and the KIT Object Database and are drawn from

50 different object categories. The dataset is augmented with per-pixel Gaussian noise and

by image reflections and rotations of 180 degrees.

4.3. Grasp Datasets in SE(3)

There are also several grasp and object datasets available for use in SE(3) grasping, a few

of which we highlight below.

4.3.1. Columbia Grasp Database (2009). This is probably the earliest grasp dataset for

SE(3) grasping (67). It is comprised of 7256 object mesh models drawn from the Princeton

Shape Benchmark (68). In total, 238k SE(3) grasps are labeled over the 7256 models using

the GRASPIT! simulator (69).

4.3.2. YCB (2015). YCB (Yale, Columbia, Berkely) (70) is an object set rather than a grasp

dataset, but it is used so frequently that we include it here. YCB is a set of 77 household

objects for which 3D mesh models and RGB images are available online. Perhaps the most
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notable thing about YCB is that there was an effort in 2015 and 2016 to distribute physical

versions of this object set to members of the research community working in the field.

4.3.3. Dex-Net Objects, Including Adversarial Objects (2017). The Berkeley Dex-Net

project was published with the following three objects sets (71, 8). 1) 1.3k synthetic 3D

mesh models from a 50 category subset of 3DNet; 2) 129 mesh models from the KIT Object

Database; 3) 13 “adversarial” models. Of these, the 13 adversarial objects is arguably the

most important because researchers can easily print these objects and benchmark their own

methods on a very challenging object set.

4.3.4. EGAD! (2020). EGAD! is an interesting dataset comprised of 2331 objects (62). The

focus here is on an algorithmic approach to generating 3D object geometries that span a

space of shape complexity and grasp difficulty. In particular, each object is ranked from 1

to 25 according to both measures (shape complexity and grasp difficulty) and placed on a

25× 25 grid. The 2331 objects were generated while ensuring that the dataset contains no

more than four objects belonging to any single grid square. The result is a quantiatively

diverse dataset. Out of this dataset, 49 object meshes are designated as evaluation objects,

to be used in benchmarking grasp algorithms. While the main focus is on the object

meshes, the dataset includes a grasp training set created using the grasp planning and

labeling method of (8).

4.3.5. GraspNet-1Billion (2020). GraspNet-1Billion is another grasp dataset the bears

mentioning (72). Although it includes data drawn from only 88 objects (32 of which are

from YCB and another 13 from DexNet 2.0), it is paired with 97k of RGBD images of 190

different cluttered scenes containing the objects. Each of these RGBD images is labeled

with tens of thousands of SE(3) grasp poses, for a total of 1.1B labeled grasp examples. In

addition to the grasps, each scene is labeled with the SE(3) poses of the objects as well.

4.3.6. ACRONYM (2021). ACRONYM is a recent SE(3) dataset comprised of 17.7 million

labeled grasps performed on 8872 objects meshes (73). The object meshes were obtained

from ShapeNet (74). The grasps were labeled using the FleX physics simulator (75) to

simulate the Franka Panda gripper (maximum grip aperture of 8cm). Observations are

available either as depth images or point clouds, produced using PyRender2. A notable

aspect of this dataset is that it does not include data in the standard dense clutter setting.

Instead, it includes two types of scenes: 1) a single object setting where a single object

is presented floating in space; 2) a “structured clutter” setting where one or more objects

have been placed on top of a surface in a way that is typical in domestic applications.

5. Discussion

5.1. Grasp Success Rates

Perhaps the most important and surprising observation to make based on the Clutter Pile

GSR columns in Tables 1 and 2 is that grasp success rates for challenging novel household

objects in clutter are still somewhere in the mid 80% to low 90% range. In other words,

most bin picking systems for novel objects in clutter will fail once out of every ten grasp

attempts. It is not clear why this is the case. One answer is that we are not yet using

large or complex enough models trained on sufficiently large datasets. Another possibility
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is that we are suffering from the sim2real gap. Since most grasp systems are trained in

simulation, it could be that we lose 10% grasp performance on the real system. A third

possibility could be that we are not bringing enough structure to the problem, e.g. perhaps

object factored models would perform better. In any case, it is also unclear whether a

90% grasp success rate is a problem. In many bin picking settings, grasp failure is not

catastrophic because it is usually possible simply to try again. As Satish et al. (20) point

out, the more relevant metric in bin picking applications is probably mean picks per hour

(MPPH). Another important point is that some industrial applications require grasping

known objects, not novel objects. In these applications, it should be possible to reach grasp

success rates near 100%. Nevertheless, there are clearly settings where high grasp success

rates for novel objects are important and further research is clearly needed to achieve this.

5.2. Benchmarking

Another point to make is that the field is obviously suffering from a lack of widely accepted

benchmarks. The exception is the Cornell Detection benchmark which is widely used in

SE(2) grasping. Unfortunately, there is nothing comparable for SE(3) grasping and this

makes the comparison between SE(3) methods very difficult. One candidate for a “3D

version” of Cornell is the ACRONYM dataset (73), a dataset that designates a large set of

training and test grasps in SE(3). Other possibilities are EGAD! which provides an interface

for obtaining labeled grasps on both training and test objects or GraspNet-1Billion (72)

which provides a set of RGBD images labeled with 3D grasps. However, even if the field

does not standardize on a dataset, even something simple like standardizing on a single

set of evaluation objects for physical robotic grasping experiments would help a lot. One

good candidate for this is to 3D-print the 49 EGAD! evaluation objects designated as

such in the EGAD! object set (62) and to use them to evaluate in a bin picking scenario.

An alternative that requires less 3D-printing is to follow the same procedure with the

13 Adversarial Dex-Net objects. Finally, benchmarking using the YCB object set (70),

comprised of commercially available consumer items, is another possibility.

5.3. Outlook

Since it is difficult to make accurate predictions about future technical developments, I

will limit myself to making just a few comments. First, this is an exciting time for grasp

learning research. Today, it has become commonplace to see robotic grasping of novel

objects from cluttered bins. This is something that was simply not possible ten years

ago. Recent developments in deep learning should bear much of the credit for this success.

Grasp learning research now appears to be closely tied to trends in machine learning and

computer vision and this seems like something that is likely to continue. However, it

would be a mistake to view grasp learning as simply an application of the same machine

learning methods that have been developed in computer vision, NLP, and elsewhere. There

are many aspects of robotics that make it a unique and interesting application domain.

First, unlike other applications of machine learning which generally focus on regression and

classification, robotics problems fundamentally involve policy learning. This necessitates

a focus on reinforcement learning, learning from demonstration, and other forms of policy

learning. Second, robotics problems generally have a geometric structure that is often not

present in NLP or even computer vision. This is something that is likely to receive more

attention in the future.
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