Learning Discrete State Abstractions With Deep Variational Inference

Abstract

Abstraction is crucial for effective sequential decision making in domains with large state spaces. In this work, we propose an information bottleneck method for learning approximate bisimulations, a type of state abstraction. We use a deep neural encoder to map states onto continuous embeddings. We map these embeddings onto a discrete representation using an action-conditioned hidden Markov model, which is trained end-to-end with the neural network. Our method is suited for environments with high-dimensional states and learns from a stream of experience collected by an agent acting in a Markov decision process. Through this learned discrete abstract model, we can efficiently plan for unseen goals in a multi-goal Reinforcement Learning setting. We test our method in simplified robotic manipulation domains with image states. We also compare it against previous model-based approaches to finding bisimulations in discrete grid-world-like environments.

Publication
In 3rd Symposium on Advances in Approximate Bayesian Inference